Title :
Semi-supervised hyperspectral band selection via sparse linear regression and hypergraph models
Author :
Zhouxiao Guo ; Haichuan Yang ; Xiao Bai ; Zhihong Zhang ; Jun Zhou
Author_Institution :
Sch. of Comput. Sci. & Eng., Beihang Univ., Beijing, China
Abstract :
Band selection is an important step towards effective and efficient object classification in hyperspectral imagery. In this paper, we propose a semi-supervised learning method for band selection based on a sparse linear regression model. This model uses a least absolute shrinkage and selection operator to compute the regression coefficients from both labeled and unlabeled samples. These coefficients are then used to compute a contribution score for each band, which allows bands with high scores being selected for the testing step. During this process, unlabeled samples also contribute to the coefficients calculation. In order to propagate the labels to these samples, a hypergraph is first built to describe the relationship between labeled and unlabeled samples. This leads to an adjacency matrix whose entries are the sum of corresponding weights of hyperedges. Then matrix subspace learning method is used to estimate the labels of unlabeled samples. The proposed method is evaluated on the APHI dataset. Comparison with several baseline methods has shown the advantages of the proposed method on the pixel-level classification.
Keywords :
geophysical image processing; hyperspectral imaging; image classification; remote sensing; APHI dataset; hyperedge weights; hypergraph model; hyperspectral imagery; matrix subspace learning method; object classification; pixel-level classification; regression coefficients; selection operator; semisupervised hyperspectral band selection; semisupervised learning method; shrinkage operator; sparse linear regression model; Accuracy; Computational modeling; Educational institutions; Hyperspectral imaging; Linear regression; Semisupervised learning; band selection; hypergraph; hyperspectral image; semi-supervised learning; sparse linear regression;
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
Conference_Location :
Melbourne, VIC
Print_ISBN :
978-1-4799-1114-1
DOI :
10.1109/IGARSS.2013.6723064