DocumentCode :
3056477
Title :
Hurricane eye extraction from SAR image using saliency-based visual attention algorithm
Author :
Shaohui Jin ; Xiaofeng Li ; Shuang Wang
Author_Institution :
Key Lab. of Intell. Perception & Image Understanding of Minist. of Educ. of China, Xidian Univ., Xian, China
fYear :
2013
fDate :
21-26 July 2013
Firstpage :
1630
Lastpage :
1633
Abstract :
Automatic hurricane information extraction in synthetic aperture radar (SAR) images has been a research topic in development. In this study, using saliency-based visual attention model, we developed an image processing procedure to extract hurricane eyes from SAR images. Experiment results show that hurricane eyes can be well extracted even when it is not visually obvious in images.
Keywords :
atmospheric techniques; feature extraction; geophysical image processing; radar imaging; remote sensing by radar; storms; synthetic aperture radar; SAR image; automatic hurricane information extraction; hurricane eye extraction; image processing procedure; saliency-based visual attention algorithm; saliency-based visual attention model; synthetic aperture radar; Feature extraction; Hurricanes; Noise; Sea surface; Spaceborne radar; Synthetic aperture radar; Visualization; Synthetic Aperture Radar (SAR); hurricane eye extraction; saliency map;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
Conference_Location :
Melbourne, VIC
ISSN :
2153-6996
Print_ISBN :
978-1-4799-1114-1
Type :
conf
DOI :
10.1109/IGARSS.2013.6723104
Filename :
6723104
Link To Document :
بازگشت