• DocumentCode
    3058577
  • Title

    Genetic Algorithm: Application to Scattered Data Problems using Lipschitz Interpolation

  • Author

    Garbacik, Neil R. ; Zohdy, Mohammed A.

  • Author_Institution
    Sch. of Eng. & Comput. Sci., Oakland Univ., Rochester Hills, MI
  • fYear
    2008
  • fDate
    16-18 July 2008
  • Firstpage
    56
  • Lastpage
    58
  • Abstract
    In this paper, a low computational method of efficiently and quickly handling large multivariate scattered data sets with a genetic algorithm for design parameter optimization is presented. The method presented combines the use of a genetic algorithm and the linear interpolation technique identified as Lipschitz Interpolation. Using this method we have improved the performance of the algorithm in two ways, the variance of the solution and the total algorithm evaluation time (an improvement of magnitude 90%).
  • Keywords
    genetic algorithms; interpolation; Lipschitz interpolation; design parameter optimization; genetic algorithm; linear interpolation; multivariate scattered data sets; scattered data problems; Algorithm design and analysis; Genetic algorithms; Genetic mutations; Interpolation; MATLAB; Mathematical model; Optimization methods; Particle scattering; Scattering parameters; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Aerospace and Electronics Conference, 2008. NAECON 2008. IEEE National
  • Conference_Location
    Dayton, OH
  • ISSN
    7964-0977
  • Print_ISBN
    978-1-4244-2615-7
  • Electronic_ISBN
    7964-0977
  • Type

    conf

  • DOI
    10.1109/NAECON.2008.4806516
  • Filename
    4806516