Title :
Delay minimization with a general pentagon rate region
Author :
Yang, Jing ; Ulukus, Sennur
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA
Abstract :
We consider a communication channel with two transmitters and one receiver, with an underlying rate region which is approximated as a general pentagon. Different from the Gaussian multiple access channel (MAC) capacity region, the sum-rate on the dominant face of this pentagon is not a constant. We allocate rates from this rate region to users according to their current queue lengths in order to minimize the average delay in the system. We formulate the problem as a Markov decision problem (MDP), and derive the structural properties of the corresponding discounted-cost MDP. We show that the delay-optimal policy has a switch curve structure. For the discounted-cost problem, we prove that the switch curve has a limit along one of the dimensions.
Keywords :
Gaussian channels; Markov processes; access protocols; delays; Gaussian MAC capacity; Gaussian multiple access channel; Markov decision problem; communication channel; delay minimization; delay-optimal policy; discounted-cost MDP; pentagon rate region; receiver; structural properties; switch curve structure; transmitters; Channel capacity; Communication channels; Delay systems; Educational institutions; Information theory; Queueing analysis; Switches; Telecommunication network reliability; Throughput; Transmitters;
Conference_Titel :
Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on
Conference_Location :
Austin, TX
Print_ISBN :
978-1-4244-7890-3
Electronic_ISBN :
978-1-4244-7891-0
DOI :
10.1109/ISIT.2010.5513302