Title :
Numerical Defect Correction as an Algorithm-Based Fault Tolerance Technique for Iterative Solvers
Author :
Oboril, Fabian ; Tahoori, Mehdi B. ; Heuveline, Vincent ; Lukarski, Dimitar ; Weiss, Jan-Philipp
Author_Institution :
Dept. of Dependable Nano-Comput., Karlsruhe Inst. of Technol. (KIT), Karlsruhe, Germany
Abstract :
As hardware devices like processor cores and memory sub-systems based on nano-scale technology nodes become more unreliable, the need for fault tolerant numerical computing engines, as used in many critical applications with long computation/mission times, is becoming pronounced. In this paper, we present an Algorithm-based Fault Tolerance (ABFT) scheme for an iterative linear solver engine based on the Conjugated Gradient method (CG) by taking the advantage of numerical defect correction. This method is "pay as you go", meaning that there is practically only a runtime overhead if errors occur and a correction is performed. Our experimental comparison with software-based Triple Modular Redundancy (TMR) clearly shows the runtime benefit of the proposed approach, good fault tolerance and no occurrence of silent data corruption.
Keywords :
conjugate gradient methods; hardware-software codesign; iterative methods; program testing; redundancy; software fault tolerance; software prototyping; TMR; algorithm based fault tolerance; conjugate gradient method; iterative linear solver; nanoscale technology; numerical computing engines; numerical defect correction; software testing; triple modular redundancy; Checkpointing; Convergence; Fault tolerance; Fault tolerant systems; Hardware; Runtime; Vectors; algorithm-based fault tolerance; checkpointing; conjugated gradient; defect correction; triple modular redundancy;
Conference_Titel :
Dependable Computing (PRDC), 2011 IEEE 17th Pacific Rim International Symposium on
Conference_Location :
Pasadena, CA
Print_ISBN :
978-1-4577-2005-5
Electronic_ISBN :
978-0-7695-4590-5
DOI :
10.1109/PRDC.2011.26