DocumentCode :
3063062
Title :
Matchmaking: A New MapReduce Scheduling Technique
Author :
He, Chen ; Lu, Ying ; Swanson, David
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA
fYear :
2011
fDate :
Nov. 29 2011-Dec. 1 2011
Firstpage :
40
Lastpage :
47
Abstract :
MapReduce is a powerful platform for large-scale data processing. To achieve good performance, a MapReduce scheduler must avoid unnecessary data transmission by enhancing the data locality (placing tasks on nodes that contain their input data). This paper develops a new MapReduce scheduling technique to enhance map task´s data locality. We have integrated this technique into Hadoop default FIFO scheduler and Hadoop fair scheduler. To evaluate our technique, we compare not only MapReduce scheduling algorithms with and without our technique but also with an existing data locality enhancement technique (i.e., the delay algorithm developed by Face book). Experimental results show that our technique often leads to the highest data locality rate and the lowest response time for map tasks. Furthermore, unlike the delay algorithm, it does not require an intricate parameter tuning process.
Keywords :
data handling; large-scale systems; scheduling; Hadoop default FIFO scheduler; Hadoop fair scheduler; MapReduce scheduling technique; data locality enhancement technique; data transmission; large-scale data processing; matchmaking; Clustering algorithms; Delay; Facebook; Heart beat; Schedules; Scheduling algorithm; Time factors; Hadoop; MapReduce; data locality; scheduling technique;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on
Conference_Location :
Athens
Print_ISBN :
978-1-4673-0090-2
Type :
conf
DOI :
10.1109/CloudCom.2011.16
Filename :
6133125
Link To Document :
بازگشت