• DocumentCode
    3065591
  • Title

    Domain adaptation with Hidden Markov Random Fields

  • Author

    Jacobs, Jan-Pieter ; Thoonen, G. ; Tuia, Devis ; Camps-Valls, G. ; Haest, Birgen ; Scheunders, Paul

  • Author_Institution
    iMinds-Vision Lab., Univ. of Antwerp (Belgium), Antwerp, Belgium
  • fYear
    2013
  • fDate
    21-26 July 2013
  • Firstpage
    3112
  • Lastpage
    3115
  • Abstract
    In this paper, we propose a method to match multitemporal sequences of hyperspectral images using Hidden Markov Random Fields. Based on the matching of the data manifold, the algorithm matches the reflectance spectra of the classes, thus allowing the reuse of labeled examples acquired on one image to classify the other. This allows valorization of spectra collected in situ to other acquisitions than the one they were acquired for, without user supervision, prior knowledge of the class reflectance in the new domain or global information about atmospheric conditions.
  • Keywords
    geophysical image processing; hidden Markov models; hyperspectral imaging; image classification; image sequences; reflectivity; remote sensing; domain adaptation; graph matching; hidden Markov random fields; hyperspectral images; multitemporal sequences; reflectance spectra; Clustering algorithms; Hidden Markov models; Hyperspectral imaging; Manifolds; Training; Vector quantization; Hidden Markov Random Fields; Multitemporal classification; domain adaptation; graph matching;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
  • Conference_Location
    Melbourne, VIC
  • ISSN
    2153-6996
  • Print_ISBN
    978-1-4799-1114-1
  • Type

    conf

  • DOI
    10.1109/IGARSS.2013.6723485
  • Filename
    6723485