DocumentCode :
3067577
Title :
Unsupervised Bayesian classifier applied to the segmentation of retina image
Author :
Banga, C. ; Ghorbel, F. ; Pieczynski, W.
Author_Institution :
Groupe Image, Institut National des Télécommunications - ENIC, 6, rue des techniques 59658 Villeneuve d´´Ascq CEDEX France
Volume :
5
fYear :
1992
fDate :
Oct. 29 1992-Nov. 1 1992
Firstpage :
1847
Lastpage :
1848
Abstract :
In this paper, we use a stochastic model based on the finite normal mixture distribution identification for retina image segmentation. Local unsupervised methods blind and contextual, using the Expectation-Maximisation (EM) family algorithms for parameter estimation are tested. To get rid of the spatial dependence effect of pixels, a decorrelation processing is used before parameter estimation. The segmentation is then performed by Bayesian decision rule. Segmentation results are presented to prove the effectiveness of different approaches.
Keywords :
Annealing; Bayesian methods; Image segmentation; Noise measurement; Pixel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE
Conference_Location :
Paris, France
Print_ISBN :
0-7803-0785-2
Electronic_ISBN :
0-7803-0816-6
Type :
conf
DOI :
10.1109/IEMBS.1992.5762067
Filename :
5762067
Link To Document :
بازگشت