• DocumentCode
    3067682
  • Title

    A dynamic inverse for nonlinear maps

  • Author

    Getz, Neil H. ; Marsden, Jerrold E.

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
  • Volume
    4
  • fYear
    1995
  • fDate
    13-15 Dec 1995
  • Firstpage
    4218
  • Abstract
    We consider the problem of estimating the time-varying root of a time-dependent nonlinear map. We introduce a “dynamic inverse” of a map, another generally time-dependent map which composes with the original map to form a nonlinear vector-field. The flow of this vector field decays exponentially to the root. We then show how a dynamic inverse may be determined dynamically while being used simultaneously to find a root. We construct a continuous-time analog computational paradigm around the dynamic inverse
  • Keywords
    continuous time systems; matrix inversion; nonlinear dynamical systems; state estimation; continuous time systems; dynamic inverse; dynamical systems; nonlinear vector-field; state estimation; time varying matrix; time-dependent nonlinear map; time-varying root; Analog computers; Computer networks; Control systems; Eigenvalues and eigenfunctions; Matrix decomposition; Neural networks; Nonlinear dynamical systems; Singular value decomposition; Sorting; Whales;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
  • Conference_Location
    New Orleans, LA
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-2685-7
  • Type

    conf

  • DOI
    10.1109/CDC.1995.480780
  • Filename
    480780