DocumentCode :
3070336
Title :
A Novel Framework for Learning to Detect Malicious Web Pages
Author :
Tao, Wang ; Shunzheng, Yu ; Bailin, Xie
Author_Institution :
Dept. of Electron. & Commun. Eng., SUN YAT-SEN Univ., Guangzhou, China
Volume :
2
fYear :
2010
fDate :
16-18 July 2010
Firstpage :
353
Lastpage :
357
Abstract :
Malicious web pages are a widely-recognized threat to the security of the web. Malicious web pages launch so-called drive-by download attacks that are able to gain complete control of a user´s computer for illegitimate purpose. Even a single visit to a malicious web page enables an automatically download and installation of malicious malware executables. In this paper, we propose a novel approach for classifying web pages automatically as either malicious or benign based on a supervised machine learning. Our approach learns to detect malicious web pages exclusively based on HTTP session information (e.g., HTTP session headers, domains of requests and responses). With the corpus of 50,000 benign web pages and 500 malicious web pages, we are capable of successfully detecting 92.2% of the malicious web pages with a low false positive rate 0.1%.
Keywords :
Internet; invasive software; learning (artificial intelligence); HTTP session information; Web security; drive-by download attacks; malicious Web page detection; malicious malware; supervised machine learning; Browsers; Classification algorithms; HTML; IP networks; Machine learning; Malware; Web pages; HTTP session information; malicious web page; malware executable; supervised machine learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Technology and Applications (IFITA), 2010 International Forum on
Conference_Location :
Kunming
Print_ISBN :
978-1-4244-7621-3
Electronic_ISBN :
978-1-4244-7622-0
Type :
conf
DOI :
10.1109/IFITA.2010.173
Filename :
5634775
Link To Document :
بازگشت