• DocumentCode
    3070933
  • Title

    Object recognition in urban hyperspectral images using Binary Partition Tree representation

  • Author

    Valero, S. ; Salembier, Philippe ; Chanussot, Jocelyn

  • Author_Institution
    CNES, Univ. de Toulouse, Toulouse, France
  • fYear
    2013
  • fDate
    21-26 July 2013
  • Firstpage
    4098
  • Lastpage
    4101
  • Abstract
    In this work, an image representation based on Binary Partition Tree is proposed for object detection in hyperspectral images. The BPT representation defines a search space for constructing a robust object identification scheme. Spatial and spectral information are integrated in order to analyze hyperspectral images with a region-based perspective. Experimental results demonstrate the good performances of this BPT-based approach.
  • Keywords
    geophysical image processing; hyperspectral imaging; image representation; object recognition; remote sensing; tree data structures; BPT representation; BPT-based approach; binary partition tree representation; image representation; object detection; object recognition; region-based perspective; remote sensing; robust object identification scheme; search space; spatial information; spectral information; urban hyperspectral images; Feature extraction; Hyperspectral imaging; Image segmentation; Merging; Object detection; Support vector machines; BPT; Object detection; Region-based image analysis; hyperspectral;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
  • Conference_Location
    Melbourne, VIC
  • ISSN
    2153-6996
  • Print_ISBN
    978-1-4799-1114-1
  • Type

    conf

  • DOI
    10.1109/IGARSS.2013.6723734
  • Filename
    6723734