DocumentCode :
3072248
Title :
On a finite group of matrices generating orbit codes on Euclidean sphere
Author :
Sidelnikov, V.M.
Author_Institution :
Moscow State Univ., Russia
fYear :
1997
fDate :
29 Jun-4 Jul 1997
Firstpage :
436
Abstract :
We consider orbit codes on a sphere SN-1 of radius 1 centered at the origin of N-dimensional Euclidean space RN. These codes are constructed as follows. Let G be a finite group of orthogonal matrices and let x be a point on SN-1. The orbit code is defined as 𝒦C(G,x)={gx;g∈G}, i.e. 𝒦(G,x) is an orbit of an initial point x under the action of the group G. Apparently Slepian (1968) was the first to define orbit codes. He named them group codes
Keywords :
codes; group theory; matrix algebra; Euclidean space; Euclidean sphere; finite group; group codes; orbit codes; orthogonal matrices; radius; Galois fields; Polynomials; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
Conference_Location :
Ulm
Print_ISBN :
0-7803-3956-8
Type :
conf
DOI :
10.1109/ISIT.1997.613373
Filename :
613373
Link To Document :
بازگشت