DocumentCode
3073593
Title
On the direct determination of epipoles: a case study in algebraic methods for geometric problems
Author
Luong, Q.-T. ; Faugeras, O.D.
Author_Institution
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
Volume
1
fYear
1994
fDate
9-13 Oct 1994
Firstpage
243
Abstract
Studies experimentally the problem of computing the position of the epipoles in a pair of uncalibrated images. The approach, which is based on the definition of the epipolar transformation, exploits algebraic constraints obtained from point correspondences and provides a direct solution in which only the epipoles are involved. This is in opposition with the methods based on the computation of the fundamental matrix. In order to obtain a robust solution, three families of methods are successively considered: the first one uses statistics on closed-form solutions provided by the so-called Sturm method, the second one finds the intersection of plane cubics by deterministic procedures, and the third one is based on non-linear minimizations of a difference of cross-ratios. The authors discuss the shortcomings of each of these and show, using numerous experimental comparisons, that a drastic improvement can be obtained
Keywords
minimisation; Sturm method; algebraic constraints; algebraic methods; closed-form solutions; epipoles; geometric problems; nonlinear minimizations; plane cubics; statistics; uncalibrated images; Application software; Calibration; Cameras; Closed-form solution; Computer aided software engineering; Geometry; Minimization methods; Robustness; Stability; Statistics;
fLanguage
English
Publisher
ieee
Conference_Titel
Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on
Conference_Location
Jerusalem
Print_ISBN
0-8186-6265-4
Type
conf
DOI
10.1109/ICPR.1994.576265
Filename
576265
Link To Document