Title :
Source coding for decentralized estimation systems
Author :
Lam, Wai M. ; Reibman, Amy R.
Author_Institution :
Dept. of Electr. Eng., Princeton Univ., NJ, USA
Abstract :
Parameter estimation in decentralized systems with distributed processors is considered. The authors restrict the local processors to be quantizers and consider the optimal design of the system to minimize the estimation error. They derive the necessary conditions of the optimal system based on different distortion functions. In particular, they show that using Fisher´s information as a distortion function can simplify the design of quantizers. An expression for the asymptotic quantization error of scalar quantizers is also derived. Numerical results show that using Fisher´s information can simplify the design and achieve good performance
Keywords :
encoding; parameter estimation; asymptotic quantization error; decentralized estimation systems; distributed processors; estimation error minimization; optimal system design; parameter estimation; source coding; Bandwidth; Communication channels; Cost function; Estimation error; Iterative algorithms; Parameter estimation; Process design; Quantization; Source coding; Surveillance;
Conference_Titel :
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
Conference_Location :
Honolulu, HI
DOI :
10.1109/CDC.1990.203438