DocumentCode :
3076
Title :
Online Parameter Estimation for Temporal Spectrum Sensing
Author :
Yuandao Sun ; Mark, Brian L. ; Ephraim, Yariv
Author_Institution :
Dept. of Electr. & Comput. Eng., George Mason Univ., Fairfax, VA, USA
Volume :
14
Issue :
8
fYear :
2015
fDate :
Aug. 2015
Firstpage :
4105
Lastpage :
4114
Abstract :
We develop a computationally efficient online parameter estimation algorithm for temporal spectrum sensing of a cognitive radio channel using a hidden bivariate Markov model. The online estimator is based on a block-recursive parameter estimation algorithm developed by Rydén for hidden Markov models. This approach requires the score function only. We develop an efficient method for computing the score function recursively and extend Rydén´s approach to hidden bivariate Markov models. The advantage of the hidden bivariate Markov model over the hidden Markov model is its ability to characterize non-geometric state sojourn time distributions, which can be crucial in spectrum sensing. Based on the hidden bivariate Markov model, an estimate of the future state of the primary user can be obtained, which can be used to reduce harmful interference and improve channel utilization. Moreover, the online estimator can adapt to changes in the statistical characteristics of the primary user. We present numerical results that demonstrate the performance of temporal spectrum sensing using the proposed online parameter estimator.
Keywords :
cognitive radio; hidden Markov models; parameter estimation; radio spectrum management; radiofrequency interference; state estimation; statistical distributions; wireless channels; Rydén´s approach; block-recursive parameter estimation algorithm; channel utilization improvement; cognitive radio channel; computationally efficient online parameter estimation algorithm; future state estimation; harmful interference reduction; hidden bivariate Markov model; nongeometric state sojourn time distribution characterization; primary user; score function; temporal spectrum sensing; Estimation; Hidden Markov models; Markov processes; Parameter estimation; Sensors; Vectors; Wireless communication; Cognitive radio; hidden Markov model; hidden Markov model (HMM); online estimation; recursive estimation; spectrum sensing;
fLanguage :
English
Journal_Title :
Wireless Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1276
Type :
jour
DOI :
10.1109/TWC.2015.2416720
Filename :
7069196
Link To Document :
بازگشت