DocumentCode :
3076139
Title :
Asymptotic performance of eigenstructure spectral analysis methods
Author :
Sharman, K. ; Durrani, T.S. ; Wax, M. ; Kailath, T.
Author_Institution :
University of Strathclyde, Glasgow, Scotland
Volume :
9
fYear :
1984
fDate :
30742
Firstpage :
440
Lastpage :
443
Abstract :
This paper considers some asymptotic statistical properties of covarianee eigenstructure spectral analysis techniques. It is shown that when the signal model is of the appropriate form, and the observations are Gaussian, the signal parameter estimates, obtained by locating the nulls in the eigen-spectrum, are asymptotically zero mean normal random variables. Based on this observation, the paper then considers the formation of confidence regions for the signal parameters. The paper presents the general case of a multi-dimensional eigenstructure algorithm, which estimates one or more parameters of each signal in the observed data.
Keywords :
Additive noise; Covariance matrix; Eigenvalues and eigenfunctions; Gaussian noise; Information systems; Multi-stage noise shaping; Parameter estimation; Signal processing; Signal processing algorithms; Spectral analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '84.
Type :
conf
DOI :
10.1109/ICASSP.1984.1172704
Filename :
1172704
Link To Document :
بازگشت