DocumentCode :
3076522
Title :
An optimizing design strategy for multiple model adaptive estimation and control
Author :
Sheldon, Stuart N. ; Maybeck, Peter S.
Author_Institution :
US Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA
fYear :
1990
fDate :
5-7 Dec 1990
Firstpage :
3522
Abstract :
A method for designing multiple model adaptive estimators to provide combined state and parameter estimation in the presence of an uncertain parameter vector is proposed. It is assumed that the parameter varies over a continuous region and a finite number of constant gain filters are available for the estimation. The estimator elemental filters are chosen by minimizing a cost functional representing the average regulation error autocorrelation, with the average taken as the true parameter ranges over the admissible parameter set. An example is used to demonstrate the improvement in performance over previously accepted design methods
Keywords :
Kalman filters; adaptive control; control system synthesis; parameter estimation; state estimation; Kalman filters; average regulation error autocorrelation; control system synthesis; estimator elemental filters; multiple model adaptive estimation; multiple model adaptive regulator; optimizing design strategy; parameter estimation; state estimation; uncertain parameter vector; Adaptive estimation; Adaptive filters; Autocorrelation; Cost function; Current measurement; Density measurement; Design optimization; Parameter estimation; Probability; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/CDC.1990.203479
Filename :
203479
Link To Document :
بازگشت