DocumentCode
3077853
Title
Clustering with multilayer perceptrons and hebbian learning based on kullback-leibler divergence
Author
Filho, Jugurt R Montalvão ; Bezerra, Murilo A., Jr. ; Oliveira, Levi P.
Author_Institution
Lab. Automacao, Univ. Tiradentes, Aracaju
fYear
2004
fDate
Sept. 29 2004-Oct. 1 2004
Firstpage
243
Lastpage
252
Abstract
A new local (Hebbian) learning algorithm for artificial neurons is presented. It is shown that, in spite of its implementation simplicity, this new algorithm, applied to neurons with sigmoidal activation function, performs data clustering by finding valleys of the probability density function (PDF) of the multivariate random variables that model incoming data. Some interesting features of this new algorithm are presented and illustrated by practical experiments
Keywords
Hebbian learning; multilayer perceptrons; pattern clustering; Hebbian learning; Kullback-Leibler divergence; artificial neurons; data clustering; multilayer perceptrons; multivariate random variables; probability density function; sigmoidal activation function; Annealing; Clustering algorithms; Cost function; Hebbian theory; Multilayer perceptrons; Neural networks; Neurons; Probability density function; Prototypes; Random variables;
fLanguage
English
Publisher
ieee
Conference_Titel
Machine Learning for Signal Processing, 2004. Proceedings of the 2004 14th IEEE Signal Processing Society Workshop
Conference_Location
Sao Luis
ISSN
1551-2541
Print_ISBN
0-7803-8608-4
Type
conf
DOI
10.1109/MLSP.2004.1422980
Filename
1422980
Link To Document