DocumentCode
3084046
Title
Decoding hand and cursor kinematics from magnetoencephalographic signals during tool use
Author
Bradberry, Trent J. ; Contreras-Vidal, José L. ; Rong, Feng
Author_Institution
Fischell Department of Bioengineering, University of Maryland, College Park, 20742 USA
fYear
2008
fDate
20-25 Aug. 2008
Firstpage
5306
Lastpage
5309
Abstract
The ability to decode kinematics of intended movement from neural activity is essential for the development of prosthetic devices, such as artificial arms, that can aid motor-disabled persons. To date, most of the progress in the development of neuromotor prostheses has been obtained by decoding neural activity acquired through invasive means, such as microelectrode arrays seated into motor cortical tissue. In this study, we demonstrate the feasibility of decoding both hand position and velocity from non-invasive magnetoencephalographic signals during a center-out drawing task in familiar and novel environments. The mean correlation coefficients between measured and decoded kinematics ranged from 0.27–0.61 for the horizontal dimension of movement and 0.06–0.58 for the vertical dimension. Our results indicate that non-invasive neuroimaging signals may contain sufficient kinematic information for controlling neuromotor prostheses.
Keywords
Arm; Decoding; Electrodes; Electroencephalography; Kinematics; Magnetic devices; Neural prosthesis; Optical feedback; Optical recording; Prosthetics; Algorithms; Biomechanics; Computer Peripherals; Evoked Potentials, Motor; Hand; Humans; Magnetoencephalography; Motor Cortex; Movement; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Task Performance and Analysis;
fLanguage
English
Publisher
ieee
Conference_Titel
Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE
Conference_Location
Vancouver, BC
ISSN
1557-170X
Print_ISBN
978-1-4244-1814-5
Electronic_ISBN
1557-170X
Type
conf
DOI
10.1109/IEMBS.2008.4650412
Filename
4650412
Link To Document