Title :
Effective 2D-3D medical image registration using Support Vector Machine
Author :
Qi, Wenyuan ; Gu, Lixu ; Zhao, Qiang
Author_Institution :
Computer Science Department, Shanghai Jiao Tong University, China
Abstract :
Registration of pre-operative 3D volume dataset and intra-operative 2D images gradually becomes an important technique to assist radiologists in diagnosing complicated diseases easily and quickly. In this paper, we proposed a novel 2D/3D registration framework based on Support Vector Machine (SVM) to compensate the disadvantages of generating large number of DRR images in the stage of intra-operation. Estimated similarity metric distribution could be built up from the relationship between parameters of transform and prior sparse target metric values by means of SVR method. Based on which, global optimal parameters of transform are finally searched out by an optimizer in order to guide 3D volume dataset to match intra-operative 2D image. Experiments reveal that our proposed registration method improved performance compared to conventional registration method and also provided a precise registration result efficiently
Keywords :
Biomedical imaging; Character generation; Diseases; Image registration; Medical diagnostic imaging; Space technology; Support vector machine classification; Support vector machines; Surgery; X-ray imaging; Algorithms; Artificial Intelligence; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
Conference_Titel :
Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4244-1814-5
Electronic_ISBN :
1557-170X
DOI :
10.1109/IEMBS.2008.4650432