Title :
Multifractal analysis by the large deviation spectrum to detect osteoporosis
Author :
Khider, M. ; Haddad, Bassam ; Ahmed, Abdelmalik Taleb
Author_Institution :
Fac. et d´Inf., Univ. des Sci. et de la Technol. Houari Boumedienne, Algiers, Algeria
Abstract :
This work is based on the use of the theory of large deviations to calculate the grain multifractal spectrum and classify bone micro architecture texture, to do this the multifractal spectrum mode is used, it gives the fractal dimension of the predominant fractal set to detect osteoporosis. In fact, one of the most relevant parameters to differentiate between pathological and normal cases in the trabecular ROI texture is the distance of separation between trabeculae in bone micro architecture. The method we propose here is based on the multifractal analysis of the signal formed by the succession of bone trabecular thickness and trabecular separation obtained from gray level intensities in the trabecular bone texture to classify the two cases of study.
Keywords :
biomedical MRI; fractals; image texture; medical image processing; MRI type; bone micro architecture texture classification; bone trabecular thickness; fractal dimension; grain multifractal spectrum; large deviation spectrum; normal cases; osteoporosis detection; pathological cases; predominant fractal set; trabecular ROI texture; trabecular bone texture; Bones; Correlation; Fractals; Gray-scale; Magnetic resonance imaging; Osteoporosis; Pathology; classification of texture; multifractal spectrum; osteoporosis; theory of large deviations;
Conference_Titel :
Systems, Signal Processing and their Applications (WoSSPA), 2013 8th International Workshop on
Conference_Location :
Algiers
DOI :
10.1109/WoSSPA.2013.6602346