DocumentCode :
3086591
Title :
Evolutionary Optimal Virtual Machine Placement and Demand Forecaster for Cloud Computing
Author :
Mark, Ching Chuen Teck ; Niyato, Dusit ; Chen-Khong, Tham
Author_Institution :
Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
fYear :
2011
fDate :
22-25 March 2011
Firstpage :
348
Lastpage :
355
Abstract :
Cloud computing allows the users to efficiently and dynamically provision computing resources to meet their IT needs. Most cloud providers offer two types of payment plans to the user, i.e., reservation and on-demand. The reservation plan is typically cheaper than the on-demand plan but reservation plan has to be provisioned in advance. Reserving the resources would be straightforward if the actual computing demand (e.g., job processing) is known in advance. However, in reality, the actual computing demand can be observed only at the point of actual usage. Therefore, it is difficult to reserve the correct amount of resources during the reservation to meet the computing demands of the users. In this paper, we propose an evolutionary optimal virtual machine placement (EOVMP) algorithm with a demand forecaster. First, a demand forecaster predicts the computing demand. Then, EOVMP uses this predicted demand to allocate the virtual machines using reservation and on-demand plans for job processing. The performance of the proposed schemes is evaluated by simulations and numerical studies. The evaluation result shows that the EOVMP algorithm can provide the solution close to the optimal solution of stochastic integer programming (SIP) and the prediction of the demand forecaster is of reasonable accuracy.
Keywords :
cloud computing; evolutionary computation; optimisation; resource allocation; virtual machines; cloud computing; computing demand; demand forecasting; evolutionary optimal virtual machine placement; ondemand payment plan; reservation payment plan; stochastic integer programming; Cloud computing; History; Kalman filters; Markov processes; Prediction algorithms; Smoothing methods; Virtual machining; Cloud Computing; demand forecasting; evolutionary algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Information Networking and Applications (AINA), 2011 IEEE International Conference on
Conference_Location :
Biopolis
ISSN :
1550-445X
Print_ISBN :
978-1-61284-313-1
Electronic_ISBN :
1550-445X
Type :
conf
DOI :
10.1109/AINA.2011.50
Filename :
5763426
Link To Document :
بازگشت