DocumentCode :
3086634
Title :
On the incentive method and its application to linear programming
Author :
Chang, Tsu-Shuan ; Adachi, Jeffery
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Davis, CA, USA
fYear :
1990
fDate :
5-7 Dec 1990
Firstpage :
2481
Abstract :
Using linear incentives to decompose a convex dynamic optimization problem into subproblems along the time axis makes low-level subproblems the same as those obtained from Lagrangian multiplier decomposition. The authors illustrate how incentive methods are related to multiplier methods, which are reinterpreted by the use of incentives. This viewpoint motivates the derivation of exterior methods for linear programming, in which an optimal solution is obtained by traveling in the exterior of the feasible region. Numerical examples are used to demonstrate the performance of one exterior method
Keywords :
linear programming; Lagrangian multiplier decomposition; convex dynamic optimization; incentive method; linear programming; Application software; Computational Intelligence Society; Concurrent computing; Cost function; Councils; Lagrangian functions; Linear programming; Mathematics; Optimal control; Optimization methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/CDC.1990.204072
Filename :
204072
Link To Document :
بازگشت