DocumentCode :
3088972
Title :
View Clustering of Wide-Baseline N-views for Photo Tourism
Author :
Brahmachari, Aveek Shankar ; Sarkar, Sudeep
Author_Institution :
Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA
fYear :
2011
fDate :
28-31 Aug. 2011
Firstpage :
157
Lastpage :
164
Abstract :
The problem of view clustering is concerned with finding connected sets of overlapping views in a collection of photographs. The view clusters can be used to organize a photo collection, traverse through a collection, or for 3D structure estimation. For large datasets, geometric matching of all image pairs via pose estimation to decide on content overlap is not viable. The problem becomes even more acute if the views in the collection are separated by wide baselines, i.e. we do not have a dense view sampling of the 3D scene that leads to increase in computational cost of epipolar geometry estimation and matching. We propose an efficient algorithm for clustering of such many weakly overlapping views, based on opportunistic use of epipolar geometry estimation for only a limited number of image pairs. We cast the problem of view clustering as finding a tree structure graph over the views, whose weighted links denote likelihood of view overlap. The optimization is done in an iterative fashion starting from an minimum spanning tree based on photometric distances between image pairs. At each iteration step, we rule out edges with low confidence of overlap between the respective views, based on epipolar geometry estimates. The minimum spanning tree is recomputed and the process is repeated until there is no further change in the link structure. We show results on the images in the 2010 Nokia Grand Challenge Dataset that contains images with low overlap with each other.
Keywords :
geometry; image matching; iterative methods; optimisation; pattern clustering; pose estimation; solid modelling; travel industry; trees (mathematics); 2010 Nokia Grand Challenge Dataset; 3D structure estimation; computational cost; epipolar geometry estimation; geometric image matching; iterative method; link structure; minimum spanning tree; optimization; photo collection; photo tourism; photometric distances; pose estimation; tree structure graph; view clustering; weighted links; wide baseline N-view; Cameras; Clustering algorithms; Estimation; Geometry; Global Positioning System; Three dimensional displays; Training; Computer Vision; Epipolar Geometry; Image Collection; Photo Organization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Graphics, Patterns and Images (Sibgrapi), 2011 24th SIBGRAPI Conference on
Conference_Location :
Maceio, Alagoas
Print_ISBN :
978-1-4577-1674-4
Type :
conf
DOI :
10.1109/SIBGRAPI.2011.43
Filename :
6134727
Link To Document :
بازگشت