DocumentCode :
3089598
Title :
Algorithm to Unmixing Hyperspectral Images Based on APSO-GMM
Author :
Cheng, Baozhi ; Zhao, Chunhui ; Wang, Yulei
Author_Institution :
Inf. & Commun. Eng. Coll., Harbin Eng. Univ., Harbin, China
fYear :
2010
fDate :
17-19 Sept. 2010
Firstpage :
964
Lastpage :
967
Abstract :
The mixed pixels of hyperspectral images can be described effectively through Gaussian Mixture Model, this paper presents a new algorithm for unsupervised unmixing from hyperspectral data, term Adaptive Particle Swarm Optimization Gaussian Mixture Model(APSO-GMM). The algorithm employ hybrid of APSO and EM to find the most advantageous parameters of GMM, the search process of the best particle exploited the parameters estimatation of multiobjective GMM, the algorithm can extract end member and decompose mixed pixels together. Experimental on synthetic and real hyperspectral data demonstrate the proposed algorithm has better unmixing result.
Keywords :
geophysical image processing; geophysical techniques; particle swarm optimisation; APSO-GMM; Adaptive Particle Swarm Optimization Gaussian Mixture Model; hyperspectral data; hyperspectral image unmixing; mixed pixels; Algorithm design and analysis; Data models; Hyperspectral imaging; Pixel; Signal processing algorithms; Gaussian Mixture Model (GMM); endmember; hyperspectral images unmixing; particle swarm optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pervasive Computing Signal Processing and Applications (PCSPA), 2010 First International Conference on
Conference_Location :
Harbin
Print_ISBN :
978-1-4244-8043-2
Electronic_ISBN :
978-0-7695-4180-8
Type :
conf
DOI :
10.1109/PCSPA.2010.238
Filename :
5635950
Link To Document :
بازگشت