• DocumentCode
    3090809
  • Title

    The sensitivity of the stable Lyapunov equation

  • Author

    Hewer, G. ; Kenney, C.

  • Author_Institution
    Naval Weapons Center, China Lake, CA
  • Volume
    26
  • fYear
    1987
  • fDate
    9-11 Dec. 1987
  • Firstpage
    2122
  • Lastpage
    2122
  • Abstract
    An analysis is presented of the sensitivity of the solution of the Lyapunov equation A*X + XA = -W, where A is stable. This analysis leads to a spectral norm bound on the relative perturbation of the solution which is optimal for a certain class of estimates and which is essentially equivalent to the Frobenius norm bound obtained from the associated Kronecker product system. The latter bound can be expressed in terms of sep(A*, -A) and is known to accurately reflect the sensitivity of the Lyapunov problem, but it is hard to interpret in terms of the original matrix A. In contrast, the spectral norm bound which we derive is directly related to the minimal L2 damping of the dynamical system z = Az. Moreover, this dynamical link with the sensitivity problem leads to a new method of systematically investigating the norm behavior of eAt as well as providing a wealth of information about control theoretic aspects of z = Az, when A is the closed loop state matrix.
  • Keywords
    Control systems; Damping; Equations; Lakes; Weapons;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1987. 26th IEEE Conference on
  • Conference_Location
    Los Angeles, California, USA
  • Type

    conf

  • DOI
    10.1109/CDC.1987.272931
  • Filename
    4049675