• DocumentCode
    3099495
  • Title

    SUPANOVA: a sparse, transparent modelling approach

  • Author

    Gunn, Steve R. ; Brown, Martin

  • Author_Institution
    Dept. of Electron. & Comput. Sci., Southampton Univ., UK
  • fYear
    1999
  • fDate
    36373
  • Firstpage
    21
  • Lastpage
    30
  • Abstract
    Traditional neural networks produce opaque models that are difficult to interpret. This work describes a transparent, non-linear, modelling approach that enables the constructed models to be visualised, enhancing their validation and interpretation. The technique combines the representational advantage of a sparse ANOVA decomposition, with the good generalisation ability of a support vector machine
  • Keywords
    Hilbert spaces; modelling; neural nets; splines (mathematics); statistical analysis; SUPANOVA; generalisation ability; model interpretation; model validation; sparse ANOVA decomposition; sparse transparent modelling approach; support vector machine; transparent nonlinear modelling approach; Analysis of variance; Computer science; Gunn devices; Hilbert space; Intersymbol interference; Kernel; Neural networks; Sampling methods; Support vector machines; Visualization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop.
  • Conference_Location
    Madison, WI
  • Print_ISBN
    0-7803-5673-X
  • Type

    conf

  • DOI
    10.1109/NNSP.1999.788119
  • Filename
    788119