DocumentCode :
3104337
Title :
Optimal Parameter Algorithm for Image Segmentation
Author :
Tian, WenJie ; Geng, Yu ; Liu, JiCheng ; Ai, Lan
Author_Institution :
Autom. Inst., Beijing Union Univ., Beijing, China
fYear :
2009
fDate :
13-14 Dec. 2009
Firstpage :
179
Lastpage :
182
Abstract :
An improved artificial fish swarm algorithm is proposed to search the optimal parameter combination in this paper. It is concerned with fuzzy entropy definition used for image segmentation. The key problem associated with this method is to find the optimal parameter combination of membership function so that an image can be transformed into fuzzy domain with maximum fuzzy entropy. Then, we compare the improved artificial fish swarm algorithm with other artificial intelligence models. The experiment indicates that the proposed method is quite effective and ubiquitous.
Keywords :
artificial intelligence; entropy; fuzzy set theory; image segmentation; particle swarm optimisation; artificial intelligence model; fuzzy entropy definition; image segmentation; improved artificial fish swarm algorithm; membership function; optimal parameter algorithm; optimal parameter combination; Artificial intelligence; Automation; Conference management; Entropy; Image segmentation; Information management; Information technology; Marine animals; Pixel; Technology management; artificial fish swarm algorithm; image segmentation; maximum fuzzy entropy; membership function; optimal parameter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Future Information Technology and Management Engineering, 2009. FITME '09. Second International Conference on
Conference_Location :
Sanya
Print_ISBN :
978-1-4244-5339-9
Type :
conf
DOI :
10.1109/FITME.2009.50
Filename :
5380900
Link To Document :
بازگشت