DocumentCode
310645
Title
Model parameter estimation for mixture density polynomial segment models
Author
Fukada, Toshiaki ; Sagisaka, Yoshinori ; Paliwal, Kuldip K.
Author_Institution
ATR Interpreting Telephony Res. Labs., Kyoto, Japan
Volume
2
fYear
1997
fDate
21-24 Apr 1997
Firstpage
1403
Abstract
In this paper, we propose parameter estimation techniques for mixture density polynomial segment models (MDPSM) where their trajectories are specified with an arbitrary regression order. MDPSM parameters can be trained in one of three different ways: (1) segment clustering, (2) expectation maximization (EM) training of mean trajectories, or (3) EM training of mean and variance trajectories. These parameter estimation methods were evaluated in TIMIT vowel classification experiments. The experimental results showed that modeling both the mean and variance trajectories are consistently superior to modeling only the mean trajectory. We also found that modeling both trajectories results in significant improvements over the conventional HMM
Keywords
hidden Markov models; parameter estimation; pattern classification; polynomials; speech processing; speech recognition; HMM; TIMIT vowel classification experiments; arbitrary regression order; expectation maximization training; mean trajectories; mixture density polynomial segment models; parameter estimation; segment clustering; speech recognition; variance trajectories; Cepstrum; Covariance matrix; Hidden Markov models; Parameter estimation; Polynomials; Solid modeling; Speech recognition;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location
Munich
ISSN
1520-6149
Print_ISBN
0-8186-7919-0
Type
conf
DOI
10.1109/ICASSP.1997.596210
Filename
596210
Link To Document