• DocumentCode
    310645
  • Title

    Model parameter estimation for mixture density polynomial segment models

  • Author

    Fukada, Toshiaki ; Sagisaka, Yoshinori ; Paliwal, Kuldip K.

  • Author_Institution
    ATR Interpreting Telephony Res. Labs., Kyoto, Japan
  • Volume
    2
  • fYear
    1997
  • fDate
    21-24 Apr 1997
  • Firstpage
    1403
  • Abstract
    In this paper, we propose parameter estimation techniques for mixture density polynomial segment models (MDPSM) where their trajectories are specified with an arbitrary regression order. MDPSM parameters can be trained in one of three different ways: (1) segment clustering, (2) expectation maximization (EM) training of mean trajectories, or (3) EM training of mean and variance trajectories. These parameter estimation methods were evaluated in TIMIT vowel classification experiments. The experimental results showed that modeling both the mean and variance trajectories are consistently superior to modeling only the mean trajectory. We also found that modeling both trajectories results in significant improvements over the conventional HMM
  • Keywords
    hidden Markov models; parameter estimation; pattern classification; polynomials; speech processing; speech recognition; HMM; TIMIT vowel classification experiments; arbitrary regression order; expectation maximization training; mean trajectories; mixture density polynomial segment models; parameter estimation; segment clustering; speech recognition; variance trajectories; Cepstrum; Covariance matrix; Hidden Markov models; Parameter estimation; Polynomials; Solid modeling; Speech recognition;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
  • Conference_Location
    Munich
  • ISSN
    1520-6149
  • Print_ISBN
    0-8186-7919-0
  • Type

    conf

  • DOI
    10.1109/ICASSP.1997.596210
  • Filename
    596210