DocumentCode :
3109588
Title :
The Geometry of Optimal Control Solutions on some Six Dimensional Lie Groups
Author :
Biggs, James ; Holderbaum, William ; Holderbaum, William
Author_Institution :
School of System Engineering, University of Reading, Reading RG2, England. Email: j.biggs@rdg.ac.uk
fYear :
2005
fDate :
12-15 Dec. 2005
Firstpage :
1427
Lastpage :
1432
Abstract :
This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E3, the spheres S3and hyperboloids H3with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO
Keywords :
Airplanes; Algebra; Control systems; Geometry; Kinematics; Manifolds; Mathematical model; Optimal control; Physics; Systems engineering and theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on
Print_ISBN :
0-7803-9567-0
Type :
conf
DOI :
10.1109/CDC.2005.1582359
Filename :
1582359
Link To Document :
بازگشت