DocumentCode :
3110577
Title :
Relative Entropy Applied to Optimal Control of Stochastic Uncertain Systems on Hilbert Space
Author :
Ahmed, Nasir U. ; Charalambous, Charalambos D.
Author_Institution :
School of Information Technology and Engineering, and Department of Mathematics, University of Ottawa, 800 King Edward Ave., Ottawa, Ontario K1N 6N5, Canada, ahmed@site.uottawa.ca
fYear :
2005
fDate :
12-15 Dec. 2005
Firstpage :
1776
Lastpage :
1781
Abstract :
This paper considers minimax problems, in which the control minimizes the pay-off induced by a measure which maximizes the pay-off over the class of measures described by a relative entropy set between the uncertain and the true measure. We present several basic properties of the relative entropy on infinite dimensional spaces, and then we apply them to an uncertain system described by a Stochastic Differential inclusion on Hilbert space.
Keywords :
Energy measurement; Entropy; Equations; Extraterrestrial measurements; Hilbert space; Minimax techniques; Optimal control; Stochastic systems; Topology; Uncertain systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on
Print_ISBN :
0-7803-9567-0
Type :
conf
DOI :
10.1109/CDC.2005.1582417
Filename :
1582417
Link To Document :
بازگشت