Title :
Iterative Nonlinear Control of a Semibatch Reactor. Stability Analysis
Author :
Cueli, J.R. ; Bordons, C.
Author_Institution :
Engineering Systems and Automation Department, University of Seville. Spain. cueli@cartuja.us.es
Abstract :
This paper presents the application of Iterative Nonlinear Model Predictive Control, INMPC, to a semibatch chemical reactor. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (MPC) with the possibility of learning from past batches, that is the base of Iterative Control. It uses a nonlinear model and a quadratic objective function that is optimized in order to obtain the control law. A stability proof with unitary control horizon is given for nonlinear plants that are affine in control and have linear output map. The controller shows capabilities to learn the optimal trajectory after a few iterations, giving a better fit than a linear non-iterative MPC controller. The controller has applications in repetitive disturbance rejection, because they do not modify the model for control purposes. In this application, some experiments with a disturbance in inlet water temperature has been performed, getting good results.
Keywords :
Automatic control; Error correction; Feedback control; Inductors; Optimal control; Predictive control; Predictive models; Process control; Robotics and automation; Stability analysis;
Conference_Titel :
Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on
Print_ISBN :
0-7803-9567-0
DOI :
10.1109/CDC.2005.1582466