DocumentCode :
3111664
Title :
A Kalman filter merging CV and acceleration estimation model using mode probabilities
Author :
Hashirao, Masataka ; Kawase, Tetsuya ; Sasase, Iwao
Author_Institution :
Dept. of Inf. & Comput. Sci., Keio Univ., Yokohama, Japan
fYear :
2002
fDate :
15-17 Oct. 2002
Firstpage :
334
Lastpage :
338
Abstract :
For multi-target tracking, the IMM (interactive multiple model) algorithm has been proposed. The IMM is expected to reduce tracking errors for both nonmaneuvering and maneuvering targets. However, the IMM requires a heavy computational burden, because it utilizes multiple Kalman filters in parallel. On the other hand, the Kalman filter with a turning acceleration estimator, which can adapt a maneuvering target, has been proposed. The Kalman filter with a turning acceleration estimator is a single two-stage type filter and has a problem of setting threshold for the maneuver detector. In this paper, we propose the hybrid filter with a constant-velocity (CV) filter and a turning acceleration estimation filter. The proposed filter does not require a maneuver detector, because it integrates the outputs of two filters using the likelihood of each filter. And its computational requirement is smaller than the IMM, since it consists of only two Kalman based filters. The proposed method can prevent deteriorating tracking accuracy by reducing the risk of maneuver misdetection when a target maneuvers. We evaluate the performance of the proposed filter by computer simulation, and show the effectiveness of the proposed filter, comparing with the conventional Kalman filter and the two-stage Kalman filter.
Keywords :
Kalman filters; radar tracking; target tracking; tracking filters; IMM; Kalman based filters; Kalman filters; constant-velocity filter; hybrid filter; interactive multiple model algorithm; maneuver misdetection; maneuvering target; multi-target tracking; nonmaneuvering target; tracking accuracy; tracking errors; turning acceleration estimator; two-stage type filter; Acceleration; Computer errors; Computer simulation; Detectors; Kalman filters; Merging; Radar tracking; State estimation; Target tracking; Turning;
fLanguage :
English
Publisher :
iet
Conference_Titel :
RADAR 2002
Conference_Location :
Edinburgh, UK
ISSN :
0537-9989
Print_ISBN :
0-85296-750-0
Type :
conf
DOI :
10.1109/RADAR.2002.1174711
Filename :
1174711
Link To Document :
بازگشت