Title :
q-Gaussian based Smoothed Functional algorithms for stochastic optimization
Author :
Ghoshdastidar, Debarghya ; Dukkipati, Ambedkar ; Bhatnagar, Shalabh
Author_Institution :
Dept. of Comput. Sci. & Autom., Indian Inst. of Sci., Bangalore, India
Abstract :
The q-Gaussian distribution results from maximizing certain generalizations of Shannon entropy under some constraints. The importance of q-Gaussian distributions stems from the fact that they exhibit power-law behavior, and also generalize Gaussian distributions. In this paper, we propose a Smoothed Functional (SF) scheme for gradient estimation using q-Gaussian distribution, and also propose an algorithm for optimization based on the above scheme. Convergence results of the algorithm are presented. Performance of the proposed algorithm is shown by simulation results on a queuing model.
Keywords :
Gaussian distribution; entropy; gradient methods; queueing theory; stochastic programming; SF scheme; Shannon entropy; gradient estimation; power-law behavior; q-Gaussian based smoothed functional algorithms; q-Gaussian distribution; queuing model; stochastic optimization; Algorithm design and analysis; Convergence; Entropy; Estimation; Gaussian distribution; Kernel; Optimization;
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
DOI :
10.1109/ISIT.2012.6283013