• DocumentCode
    3117699
  • Title

    FCMdd-type linear fuzzy clustering for incomplete non-Euclidean relational data

  • Author

    Yamamoto, Takeshi ; Honda, Katsuhiro ; Notsu, Akira ; Ichihashi, Hidetomo

  • Author_Institution
    Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
  • fYear
    2011
  • fDate
    27-30 June 2011
  • Firstpage
    792
  • Lastpage
    798
  • Abstract
    A linear fuzzy clustering model based on Fuzzy c-Medoids (FCMdd) was proposed for extracting intrinsic local linear substructures from relational data. In the same way with Non-Euclidean Relational Fuzzy (NERF) c-Means, β-spread transformation was also proved to be useful for handling non Euclidean relational data in FCMdd-type linear clustering. In this paper, the FCMdd-type linear clustering model is further modified in order to handle incomplete data including missing values. In several numerical experiments, it is demonstrated that some pre-imputation strategies contribute to properly selecting representative medoids of each cluster.
  • Keywords
    data handling; fuzzy set theory; pattern clustering; relational databases; FCMdd-type linear fuzzy clustering model; NERF c-means clustering; beta-spread transformation; fuzzy c-medoids; incomplete nonEuclidean relational data handling; intrinsic local linear substructure extraction; nonEuclidean relational fuzzy c-means clustering; Clustering algorithms; Data mining; Data models; Eigenvalues and eigenfunctions; Euclidean distance; Image color analysis; Prototypes; linear fuzzy clustering; missing value; relational clustering;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems (FUZZ), 2011 IEEE International Conference on
  • Conference_Location
    Taipei
  • ISSN
    1098-7584
  • Print_ISBN
    978-1-4244-7315-1
  • Electronic_ISBN
    1098-7584
  • Type

    conf

  • DOI
    10.1109/FUZZY.2011.6007379
  • Filename
    6007379