DocumentCode :
3119154
Title :
On some clustering approaches for graphs
Author :
Stokes, Klara ; Torra, Vicenç
Author_Institution :
Dept. of Comput. Eng. & Math., Univ. Rovira i Virgili, Tarragona, Spain
fYear :
2011
fDate :
27-30 June 2011
Firstpage :
409
Lastpage :
415
Abstract :
In this paper we discuss some tools for graph perturbation with applications to data privacy. We present and analyse two different approaches. One is based on matrix decomposition and the other on graph partitioning. We discuss these methods and show that they belong to two traditions in data protection: noise addition/microaggregation and k-anonymity.
Keywords :
data privacy; graph theory; matrix decomposition; clustering approach; data privacy; data protection; graph partitioning; graph perturbation; k-anonymity; matrix decomposition; noise addition; noise microaggregation; Correlation; Data privacy; Eigenvalues and eigenfunctions; Matrix decomposition; Media; Singular value decomposition; Symmetric matrices; Data privacy; clustering; graph; k-anonymity; microaggregation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems (FUZZ), 2011 IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1098-7584
Print_ISBN :
978-1-4244-7315-1
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2011.6007447
Filename :
6007447
Link To Document :
بازگشت