DocumentCode :
3119602
Title :
Partitioning Fuzzy C-Means Clustering Algorithms for Interval-Valued Data Based on City-Block Distances
Author :
de A T de Carvalho, Francisco ; Barbosa, Gibson B. N. ; Pimentel, Julio T.
Author_Institution :
Centro de Inf. (CIn), Univ. Fed. de Pernambuco (UFPE), Recife, Brazil
fYear :
2013
fDate :
19-24 Oct. 2013
Firstpage :
113
Lastpage :
118
Abstract :
This paper presents partitioning fuzzy c-means clustering algorithms for interval-valued data based on city-block distances. These fuzzy c-means clustering algorithms give a fuzzy partition and a prototype for each fuzzy cluster by optimizing an adequacy criterion based on suitable adaptive and non-adaptive city-block distances between vectors of intervals. The adaptive city-block distances change at each algorithm iteration and are different from one fuzzy cluster to another. Experiments with real interval-valued data sets show the usefulness of these fuzzy clustering algorithms.
Keywords :
fuzzy set theory; pattern clustering; algorithm iteration; fuzzy c-means clustering algorithms; fuzzy partitioning; intervals vectors; nonadaptive city-block distances; real interval-valued data sets; Clustering algorithms; Equations; Indexes; Partitioning algorithms; Prototypes; Standards; Vectors; city-block distances; fuzzy c-menas; interval-valued data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems (BRACIS), 2013 Brazilian Conference on
Conference_Location :
Fortaleza
Type :
conf
DOI :
10.1109/BRACIS.2013.27
Filename :
6726435
Link To Document :
بازگشت