Title :
A functional-link based interval type-2 compensatory fuzzy neural network for nonlinear system modeling
Author :
Chang, Jyh-Yeong ; Lin, Yang-Yin ; Han, Ming-Feng ; Lin, Chin-Teng
Author_Institution :
Dept. of Electr. & Control Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan
Abstract :
In this paper, the Functional-Link based Interval Type-2 Compensatory Fuzzy Neural Network (FLIT2CFNN) is a six-layer structure, which combines compensatory fuzzy reasoning method, and the consequent part is combined the proposed functional-link neural network with interval weights. The compensatory fuzzy reasoning method uses adaptive fuzzy operations of neuro-fuzzy systems that can make the fuzzy logic system more adaptive and effective. Initially, there is no rule in the FLIT2CFNN. A FLIT2CFNN is constructed using concurrent structure and parameter learning. The advantages of this learning algorithm are that it converges quickly and the obtained fuzzy rules are more precise. All of the antecedent part parameters and compensatory degree values are learned by gradient descent algorithm. Several simulation results show that the FLIT2CFNN achieves better performance than other feedforword type-1 and type-2 FNNs.
Keywords :
fuzzy logic; fuzzy neural nets; fuzzy reasoning; fuzzy set theory; gradient methods; nonlinear systems; adaptive fuzzy operations; antecedent part parameters; compensatory degree values; compensatory fuzzy reasoning method; concurrent structure; functional-link based interval type-2 compensatory fuzzy neural network; fuzzy logic system; gradient descent algorithm; interval weights; neuro-fuzzy systems; nonlinear system modeling; parameter learning; Adaptive systems; Firing; Fuzzy logic; Fuzzy neural networks; Noise; Nonlinear systems; compensatory operation; on-line fuzzy clustering; structure learning; type-2 fuzzy systems;
Conference_Titel :
Fuzzy Systems (FUZZ), 2011 IEEE International Conference on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-7315-1
Electronic_ISBN :
1098-7584
DOI :
10.1109/FUZZY.2011.6007477