Title :
Modeling of a single element pulsed ring-down antenna for implementation in a phased array system
Author :
Belt, D. ; Mankowski, J. ; Walter, J. ; Dickens, J.
Author_Institution :
Center for Pulsed Power and Power Electronics, Departments of Electrical & Computer Engineering and Physics, Texas Tech University, Lubbock, 79409-3102, USA
Abstract :
A pulsed ring-down phased array antenna provides substantial energy deposition in the far field region in addition to a broad range main beam with scanning capabilities. This allows remote neutralization of Improvised Explosive Devices (IEDs) at far field distances and in virtually any direction. The pulsed ring-down antenna operates by charging the single element antenna with a high potential source and closing a switch to develop transient wave reflections on the antenna which then propagate in air. The performance of a pulsed ring-down phased array is highly contingent upon the design and performance of the individual antenna elements within the array. Such factors as operating voltage, antenna capacitance, material losses, antenna geometry and closing switch conductance characteristics must be examined for optimal performance to be achieved. By utilizing the COMSOL RF module transient analysis functions, we are able to characterize the various parameters beginning with a monopole and a dipole pulsed ring-down antenna operating in the hundreds of MHz range. We have examined and compared the results achieved from the experimental setup to the simulation model in order to better characterize the individual components of the antenna. We have also examined the discrepancies between an ideal closing switch and the experimental setup closing switch, which dramatically affects the far field range of the antenna. We have examined the material properties of the antenna to improve losses and increase system capacitance allowing an increase in the number of RF cycles per antenna discharge. With the results presented, an accurate model of pulsed ring-down antennas is available and will allow future development of more complex geometries that will improve the operation of pulsed ring-down phased array.
Keywords :
Antenna arrays; Antennas and propagation; Capacitance; Dipole antennas; Explosives; Geometry; Phased arrays; Radio frequency; Reflector antennas; Switches;
Conference_Titel :
Pulsed Power Conference, 2007 16th IEEE International
Conference_Location :
Albuquerque, NM
Print_ISBN :
978-1-4244-0913-6
Electronic_ISBN :
978-1-4244-0914-3
DOI :
10.1109/PPPS.2007.4652443