DocumentCode :
3120205
Title :
Multi-Bernoulli filtering with unknown clutter intensity and sensor field-of-view
Author :
Vo, Ba Tuong ; Vo, Ba Ngu ; Hoseinnezhad, Reza ; Mahler, Ronald P S
Author_Institution :
Sch. of Electr., Electron. & Comput. Eng., Univ. of Western Australia, Crawley, WA, Australia
fYear :
2011
fDate :
23-25 March 2011
Firstpage :
1
Lastpage :
6
Abstract :
In Bayesian multi-target filtering knowledge of parameters such as clutter intensity and sensor field-of-view are of critical importance. Significant mismatches in clutter and sensor field of view model parameters results in biased estimates. In this paper we propose a multi-target filtering solution that can accommodate non-linear target model and unknown non-homogeneous clutter intensity and sensor field-of-view. Our solution is based on the multi-target multi-Bernoulli filter that adaptively learns non-homogeneous clutter intensity and sensor field-of-view while filtering.
Keywords :
clutter; filtering theory; Bayesian multitarget filtering; multiBernoulli filtering; nonhomogeneous clutter intensity; nonlinear target model; sensor field-of-view; Adaptation model; Approximation methods; Clutter; Generators; Noise; Noise measurement; Target tracking; Multi-Target Bayes filter; finite set statistics; multi-Bernoulli filter; multi-target tracking; online parameter estimation; robust filtering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Sciences and Systems (CISS), 2011 45th Annual Conference on
Conference_Location :
Baltimore, MD
Print_ISBN :
978-1-4244-9846-8
Electronic_ISBN :
978-1-4244-9847-5
Type :
conf
DOI :
10.1109/CISS.2011.5766180
Filename :
5766180
Link To Document :
بازگشت