• DocumentCode
    31220
  • Title

    Online Homotopy Algorithm for a Generalization of the LASSO

  • Author

    Hofleitner, A. ; Rabbani, T. ; El Ghaoui, Laurent ; Bayen, A.

  • Author_Institution
    Electr. Eng. & Comput. Sci., UC Berkeley, Berkeley, CA, USA
  • Volume
    58
  • Issue
    12
  • fYear
    2013
  • fDate
    Dec. 2013
  • Firstpage
    3175
  • Lastpage
    3179
  • Abstract
    The LASSO is a widely used shrinkage method for linear regression. We propose an online homotopy algorithm to solve a generalization of the LASSO in which the l1 regularization is applied on a linear transformation of the solution, allowing to input prior information on the structure of the problem and to improve interpretability of the results. The algorithm takes advantage of the sparsity of the solution for computational efficiency and is promising for mining large datasets.
  • Keywords
    data mining; learning (artificial intelligence); regression analysis; LASSO; computational efficiency; interpretability; large dataset mining; linear regression; linear transformation; online homotopy algorithm; shrinkage method; Estimation; Optimization; Polynomials; Probes; Signal processing algorithms; Vehicles; LASSO;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2013.2259373
  • Filename
    6506951