DocumentCode :
3122912
Title :
SOS approximation of polynomials nonnegative on an algebraic set
Author :
Lasserre, Jean B.
Author_Institution :
LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cédex 4, France. lasserre@laas.fr
fYear :
2005
fDate :
12-15 Dec. 2005
Firstpage :
5837
Lastpage :
5841
Abstract :
Let V ⊂Rnbe a real algebraic set described by finitely many polynomials equations gj(x)=0, j∈J, and let f be a real polynomial, nonnegative on V. We show that for every ∈>0, there exist nonnegative scalars {λj}j∈Jsuch that, for all r sufficiently large, f∈r+∑j∈Jλjg2j, is a sum of squares, for some polynomial f∈rwith a simple and explicit form in terms of f and the parameters ∈>0, r∈N, and such that ||f-f∈r||1→0 as ∈→0. This representation is an obvious certificate of nonnegativity of f∈ron V, and valid with no assumption on V. In addition, this representation is also useful from a computational point of view, as we can define semidefinite programming relaxations to approximate the global minimum of f on a real algebraic set V, or a basic closed semi-algebraic set K, and again, with no assumption on V or K.
Keywords :
Equations; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on
Print_ISBN :
0-7803-9567-0
Type :
conf
DOI :
10.1109/CDC.2005.1583094
Filename :
1583094
Link To Document :
بازگشت