Title :
A Large Deviations Analysis of Scheduling in Wireless Networks
Author :
Ying, Lei ; Srikant, R. ; Dullerud, G.E.
Author_Institution :
Department of Electrical and Computer Engineering and the Coordinated Science Lab, University of Illinois at Urbana-Champaign, lying@uiuc.edu
Abstract :
We consider a cellular network consisting of a base station and N receivers. The channel to each receiver is assumed to be in one of two states (ON or OFF) and the channel states of the receivers are assumed to be independent of each other. The goal is to compare the throughput of two different scheduling policies given an upper bound on the queue overflow probability or the delay violation probability. The two scheduling policies that we consider are: (i) a greedy scheduling policy which chooses to serve any of the channels in the ON state, and (ii) a queue-length-based policy which serves the longest queue connected to an ON channel. We show that the total network throughput of the queue-length-based policy is no less than that of the greedy policy for all N and is strictly larger than the throughput of the greedy policy for large N. Further, given an upper bound on the delay violation probability, we show that the throughput of the queue-length-based policy is an increasing function of N while the throughput of the greedy policy eventually decreases with increasing N and goes to zero. Given an upper bound on the queue overflow probability, we show that the throughput of the queue-length-based policy is a strictly increasing function of N while the throughput of the greedy policy eventually goes to a constant.
Keywords :
Base stations; Delay; Intelligent networks; Job shop scheduling; Land mobile radio cellular systems; Processor scheduling; Stability; Throughput; Upper bound; Wireless networks;
Conference_Titel :
Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on
Print_ISBN :
0-7803-9567-0
DOI :
10.1109/CDC.2005.1583124