DocumentCode :
3126949
Title :
Sparse Group Lasso for Regression on Land Climate Variables
Author :
Chatterjee, Soumyadeep ; Banerjee, Arindam ; Chatterjee, Snigdhansu ; Ganguly, Auroop R.
Author_Institution :
Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA
fYear :
2011
fDate :
11-11 Dec. 2011
Firstpage :
1
Lastpage :
8
Abstract :
The large amount of reliable climate data available today has promoted the development of statistical predictive models for climate variables. In this paper we have applied Sparse Group Lasso to build a predictive model for land climate variables using ocean climate variables as covariates. We demonstrate that the sparse model provides better predictive performance than the state-of-the-art, is climatologically interpretable and robust in variable selection.
Keywords :
weather forecasting; Sparse Group Lasso; climate data; land climate variables; sparse model; statistical predictive models; Meteorology; Ocean temperature; Predictive models; Robustness; Training; USA Councils; climate prediction; sparse group lasso; sparse regression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4673-0005-6
Type :
conf
DOI :
10.1109/ICDMW.2011.155
Filename :
6137353
Link To Document :
بازگشت