DocumentCode :
3127300
Title :
Using order statistics for object tracking
Author :
Werner, M. ; von Seelen, W.
Author_Institution :
Inst. fur Neuroinf., Ruhr-Univ., Bochum, Germany
fYear :
1997
fDate :
9-12 Nov 1997
Firstpage :
712
Lastpage :
716
Abstract :
We propose a new model free approach to object tracking. It is based on the estimation of the location and scale parameter of a feature distribution by using asymptotic properties of order statistics. The basic distribution considered is the distribution of the coordinates of some kind of low level localized features, e.g. edges. A robust and real time tracking behavior is achieved by the algorithm´s integrative character. The performance of the approach is demonstrated by a real world example
Keywords :
computer vision; feature extraction; statistical analysis; tracking; asymptotic properties; edges; feature distribution; low-level localized features; object tracking; order statistics; robust real-time tracking; Cramer-Rao bounds; Data mining; Density functional theory; Histograms; Lighting; Parameter estimation; Probability; Robustness; Statistical distributions; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Transportation System, 1997. ITSC '97., IEEE Conference on
Conference_Location :
Boston, MA
Print_ISBN :
0-7803-4269-0
Type :
conf
DOI :
10.1109/ITSC.1997.660561
Filename :
660561
Link To Document :
بازگشت