DocumentCode :
3127699
Title :
Twitter Trending Topic Classification
Author :
Lee, Kathy ; Palsetia, Diana ; Narayanan, Ramanathan ; Patwary, Md Mostofa Ali ; Agrawal, Ankit ; Choudhary, Alok
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA
fYear :
2011
fDate :
11-11 Dec. 2011
Firstpage :
251
Lastpage :
258
Abstract :
With the increasing popularity of microblogging sites, we are in the era of information explosion. As of June 2011, about 200 million tweets are being generated everyday. Although Twitter provides a list of most popular topics people tweet about known as Trending Topics in real time, it is often hard to understand what these trending topics are about. Therefore, it is important and necessary to classify these topics into general categories with high accuracy for better information retrieval. To address this problem, we classify Twitter Trending Topics into 18 general categories such as sports, politics, technology, etc. We experiment with 2 approaches for topic classification, (i) the well-known Bag-of-Words approach for text classification and (ii) network-based classification. In text-based classification method, we construct word vectors with trending topic definition and tweets, and the commonly used tf-idf weights are used to classify the topics using a Naive Bayes Multinomial classifier. In network-based classification method, we identify top 5 similar topics for a given topic based on the number of common influential users. The categories of the similar topics and the number of common influential users between the given topic and its similar topics are used to classify the given topic using a C5.0 decision tree learner. Experiments on a database of randomly selected 768 trending topics (over 18 classes) show that classification accuracy of up to 65% and 70% can be achieved using text-based and network-based classification modeling respectively.
Keywords :
Bayes methods; decision trees; information retrieval; pattern classification; social networking (online); text analysis; C5.0 decision tree learner; Twitter trending topic classification; bag-of-words approach; information explosion; information retrieval; microblogging sites; naive Bayes multinomial classifier; network-based classification; politics; sports; technology; text-based classification method; tf-idf weights; word vectors; Accuracy; Computational modeling; Data models; Labeling; Machine learning; Twitter; Social Networks; Topic Classification; Twitter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4673-0005-6
Type :
conf
DOI :
10.1109/ICDMW.2011.171
Filename :
6137387
Link To Document :
بازگشت