DocumentCode :
3127760
Title :
Anomaly detection in spatiotemporal data in the maritime domain
Author :
Avram, Vladimir ; Glässer, Uwe ; Shahir, Hamed Yaghoubi
Author_Institution :
Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC, Canada
fYear :
2012
fDate :
11-14 June 2012
Firstpage :
147
Lastpage :
149
Abstract :
Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This paper explores a novel approach to representing spatiotemporal data for model-driven methods for detecting patterns of anomalous behaviour in spatiotemporal datasets.
Keywords :
marine engineering; security of data; anomaly detection; data volume; maritime domain; maritime security; spatiotemporal data; Abstracts; Bayesian methods; Data models; Educational institutions; Probability density function; Security; Spatiotemporal phenomena;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligence and Security Informatics (ISI), 2012 IEEE International Conference on
Conference_Location :
Arlington, VA
Print_ISBN :
978-1-4673-2105-1
Type :
conf
DOI :
10.1109/ISI.2012.6284274
Filename :
6284274
Link To Document :
بازگشت