DocumentCode
3129149
Title
Tunable work function molybdenum gate technology for FDSOI-CMOS
Author
Ranade, Pushkar ; Choi, Yang-Kyu ; Ha, Daewon ; Agarwal, Abhishek ; Ameen, Michael ; King, Tsu-Jae
Author_Institution
Dept. of Mater. Sci. & Eng., California Univ., Berkeley, CA, USA
fYear
2002
fDate
8-11 Dec. 2002
Firstpage
363
Lastpage
366
Abstract
A simple technique for tuning the work function of molybdenum (Mo) gate material over a wide range (4.5 V-4.9 V) is investigated. Ultra-low energy (/spl les/3 keV) Ar/sup +/ and N/sup +/ ion implantation is used to selectively induce structural and/or chemical changes in Mo gate films. These changes are shown to directly affect the Mo gate work function, so that it can be adjusted by adjusting the implant parameters and annealing conditions. The mechanism behind this phenomenon is investigated using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The applicability of this technique for threshold voltage (V/sub TH/) control, particularly in fully-depleted SOI CMOS devices, is demonstrated with Mo gated ultra-thin body (UTB) SOI MOSFETs and double-gate FinFETs.
Keywords
CMOS integrated circuits; MOSFET; X-ray diffraction; X-ray photoelectron spectra; annealing; ion implantation; silicon-on-insulator; work function; 3 keV; 4.5 to 4.9 V; FDSOI-CMOS; Mo-SiO/sub 2/-Si; X-ray diffraction; X-ray photoelectron spectroscopy; annealing conditions; double-gate FinFETs; gate work function; implant parameters; threshold voltage control; tunable work function; ultra-thin body MOSFETs; Annealing; Argon; Chemicals; Implants; Ion implantation; Spectroscopy; Threshold voltage; Voltage control; X-ray diffraction; X-ray scattering;
fLanguage
English
Publisher
ieee
Conference_Titel
Electron Devices Meeting, 2002. IEDM '02. International
Conference_Location
San Francisco, CA, USA
Print_ISBN
0-7803-7462-2
Type
conf
DOI
10.1109/IEDM.2002.1175853
Filename
1175853
Link To Document