DocumentCode :
3131432
Title :
The log-volume of optimal constant-composition codes for memoryless channels, within O(1) bits
Author :
Moulin, Pierre
Author_Institution :
Dept of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
fYear :
2012
fDate :
1-6 July 2012
Firstpage :
826
Lastpage :
830
Abstract :
This paper derives a tight asymptotic upper bound on the maximum volume M*cc(n, ϵ) of length-n constant-composition codes subject to an average decoding error probability ϵ: Mbb(n, ϵ) = exp{nC - √nV Φ- (1 - ϵ) + 1/2 log n + An, ϵ + o(1)} where Φ is the cdf of the standard normal distribution, and An, ϵ is a bounded sequence that can be explicitly identified and reduces to a constant in the nonlattice case. A lower bound is presented, differing from the upper bound by an easily computable multiplying constant. These expressions hold under certain regularity assumptions on the channel.
Keywords :
channel coding; decoding; error statistics; decoding error probability; log volume; lower bound; memoryless channels; optimal constant composition codes; standard normal distribution; tight asymptotic upper bound; Decoding; Error probability; Lattices; Manganese; Random variables; Upper bound; Zinc;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
ISSN :
2157-8095
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2012.6284676
Filename :
6284676
Link To Document :
بازگشت