• DocumentCode
    3136067
  • Title

    Practical stability of continuous-time switched systems without a common equilibria and governed by a time-dependent switching signal

  • Author

    Kuiava, Roman ; Ramos, Rodrigo A. ; Pota, Hemanshu R. ; Alberto, Luis F.C.

  • Author_Institution
    Dept. of Electr. Eng., Fed. Univ. of Parana (UFPR), Curitiba, Brazil
  • fYear
    2011
  • fDate
    19-21 Dec. 2011
  • Firstpage
    1156
  • Lastpage
    1161
  • Abstract
    In this paper, the problem of practical stability of some classes of continuous-time switched systems is studied. The main results of this paper include some sufficient conditions concerning practical stability of continuous-time switched nonlinear systems without a common equilibria for all subsystems. In this class of switched systems, the equilibrium point varies discontinuously according to a time-dependent switching signal. So, stability with respect to a set, rather than a particular point, is discussed. Using this preliminary result, we present sufficient conditions in the form of linear matrix inequalities (LMIs) for practical stability of a particular class of switched systems without common equilibria: the switched affine systems. An illustrative example is presented to show the validity of the results.
  • Keywords
    continuous time systems; linear matrix inequalities; nonlinear systems; stability; time-varying systems; LMI; continuous-time switched system; linear matrix inequalities; nonlinear system; practical stability; sufficient conditions; switched affine system; time-dependent switching signal; Asymptotic stability; Educational institutions; Linear matrix inequalities; Lyapunov methods; Stability analysis; Switched systems; Switches;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Automation (ICCA), 2011 9th IEEE International Conference on
  • Conference_Location
    Santiago
  • ISSN
    1948-3449
  • Print_ISBN
    978-1-4577-1475-7
  • Type

    conf

  • DOI
    10.1109/ICCA.2011.6137883
  • Filename
    6137883